
Diverging Heisenberg spin ladders: ground state and low energy excitations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys.: Condens. Matter 19 172201

(http://iopscience.iop.org/0953-8984/19/17/172201)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 28/05/2010 at 17:52

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/19/17
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 19 (2007) 172201 (6pp) doi:10.1088/0953-8984/19/17/172201

FAST TRACK COMMUNICATION

Diverging Heisenberg spin ladders: ground state and
low energy excitations

Debabrata Parihari and Swapan K Pati

Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur,
Bangalore 560064, India

Received 7 February 2007, in final form 7 March 2007
Published 28 March 2007
Online at stacks.iop.org/JPhysCM/19/172201

Abstract
We consider a two-leg ladder system with interactions varying from constant
rung coupling to systematic diminishing of rung interactions leading to
diverging chains. We compare and contrast their ground state and excitation
characteristics using density matrix renormalization group methods. We find
that the finite spin gap in a constant coupling ladder develops into a gapless
excitation with slight diminishing of the distance dependent coupling. Varying
the spatial range of the rung coupling, we derive the effective length scale of
triplet excitations in these ladder classes of systems.

Studies of low dimensional magnetic systems have been the subject of intensive theoretical
and experimental research in recent years due to their unique low energy characteristics. For
example, while the integer spin Heisenberg chain has a gap in the excitation spectrum together
with an exponentially decaying correlation function, its half-integer analogues show gapless
excitations with a power-law correlation function [1, 2]. On the other hand, in two dimensions,
for a square lattice, the Heisenberg model exhibits long range Néel order in the ground state and
has gapless Goldstone modes [3]. Recent interest however lies in systems with intermediate
dimensionality and the crossovers between one and two dimensions. One of the approaches
to such problems is studying the two-dimensional systems where the interaction along the
x-axis is different from that along the y-axis [4]. The way to explore this issue is through
the Heisenberg spin ladders consisting of a finite number of chains coupled together, with
coupling j‖ along the chain and j⊥ between them. There have been many examples of such
ladder systems and a series of ladder structures have already been realized, such as vanadyl
pyrophosphate (VO)2P2O7 [5] and the strontium cuprates SrCu2O3 [6].

Theoretically, a number of striking prediction have been made for such systems. One
clear result from all these studies [7–12] is that ladders with an even number of legs have an
energy gap, short range correlation and a ‘spin liquid’ ground state, while for odd number of
legs, the excitation is gapless, with quasi-long range order, and a power-law fall-off of spin–
spin correlations. The nature of the ground state has been confirmed experimentally [13]. The
thermal and magnetic properties of the integrable SU(4) ladder model have been investigated
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by transfer matrix and high temperature expansion methods. Excellent agreement has been
observed between the theoretical results and the experimental data [14]. More recently, ladder
models with competing interactions, such as with staggered dimerization and with rung and
diagonal coupling, have been introduced and studied in detail. We consider here a conventional
two-leg ladder system and study its ground state and excitation characteristics by varying the
rung coupling in such a way that the lattice looks like a diverging system. We hereafter
call it a diverging ladder. Divergence in coupling turns out to play a crucial role in the
excitation characteristics of these ladders. Although such systems have not yet been realized
experimentally, recent synthesis of systems with bulky groups in place of hydrogens holds
promise for diverging ladder realization with multi-chain characteristics [16].

A very remarkable fact about the spin-1/2 Heisenberg chain is that its excitation spectrum
consists of spin-1/2 particles (spinons). Physically such excitations can be created only in
pairs because upon flipping one spin the total spin projection is changed by one. Thus in the
spin-1/2 Heisenberg chain, the conventional magnons carrying spin 1 are deconfined into spin-
1/2 spinons. Putting two spin-1/2 chains together one can observe how spinons are confined
back into magnons by studying the dynamical susceptibility. The interchain exchange thus
serves here as a control parameter. One can obtain a qualitative understanding of the spinon
confinement by considering the strong coupling limit of the spin ladder problem [15]. As
the interchain exchange of the spin ladder problem serves as a control parameter for spinon
confinement, it would be very interesting to study the ground state and excitation properties of
the spin ladder problem by varying the interchain interaction strength gradually in such a way
that the ladder system represents various diverging ladders.

There are various numerical and analytical techniques for studying the properties of the
spin chain systems. The density matrix renormalization group (DMRG) [17] is perhaps the best
numerical tool for handling the spin-1/2 quantum chains and various frustrated spin systems,
as it is considered to be the most accurate method for addressing interacting systems in low
dimensions [17, 18]. In this work, we have used the DMRG method for studying the Heisenberg
ladder with two legs together with various interchain interaction limits.

The Hamiltonian of our system is given by

H =
N/2∑

n=1

j S1,n · S1,n+1 + j S2,n · S2,n+1 + j ′′S1,n · S2,n (1)

where S1,n denotes the S = 1/2 spin at the nth site of the first chain and S2,n denotes the
S = 1/2 spin at the nth site of the second chain. To reduce the finite size effect, we consider
the periodic boundary condition so that S1,1 = S1,N+1 and S2,1 = S2,N+1. For convenience, we
have considered the interaction along the chain as j = 1.0. j ′′ is chosen in such a way that the
ladder represents a conventional two-leg system with varying interaction such that j ′′ = j ′

pn′−1 ,

where p = 1, 2, 3 and 4 and n′ = 1, 2, 3, . . .. The schematic diagram is shown in figure 1.
Note that the conventional spin ladder is represented when p = 1.

In an effort to understand the low energy characteristics, we have varied the j ′ values
from 0.0 to 1.0. We have verified that the DMRG results compare fairly well with the exact
diagonalization results for all j ′ values. In all cases, when j ′ = 0.0, the system is two simple
Heisenberg chains without any coupling. In this case, the ground state is highly degenerate.
However, with inclusion of nonzero j ′ for all p, the ground state degeneracy of the system is
lifted. The ground state is characterized by the value of the total spin z-component, which is a
singlet, with Sz = 0. In figure 2, the ground state energy/site is plotted versus j ′ for N = 20,
40 and for infinite system for the conventional as well as for all diverging spin ladders for
direct comparison. As can be seen from figure 2, for all cases, the energy/site decreases with
increasing j ′; however, the rate of decrease in energy is steeper for the Heisenberg ladder than
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j′j ′

Figure 1. Schematic diagram of the diverging ladder. The intrachain coupling is fixed as a constant
and the interchain coupling weakens as the chain diverges. See the text for details.
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Figure 2. Energy/site versus j ′ for N = 20 (circle), N = 40 (triangle) and N = ∞ (star) for
(a) spin ladder, (b) diverging ladder with p = 2, (c) diverging ladder with p = 3 and (d) diverging
ladder with p = 4.

for the diverging ladder. Figure 2 also shows that there is a strong finite size effect, the more so
for the diverging cases. In fact, the energy saturation depends strongly on the ladder type.

Let E1(N) be the lowest eigenvalue of the matrix for Sz = 1 (or Sz = −1) for N sites sys-
tem. Then, the singlet–triplet energy gap �st is given by �st = E1(N) − Eg(N). Here Eg(N)

is the ground state energy of the N-site system. In figures 3(a) and (c), we have plotted �st as
a function of j ′ for N = 8, 16, 24, . . . , 40 for the spin ladder and as well as for the diverging
ladder with p = 2. In the Heisenberg ladder, the gap decreases up to a certain j ′, but beyond
that it increases with j ′. This critical j ′, however, strongly depends on the system size; the big-
ger the system size, the smaller the critical j ′. Furthermore, the rate of reduction of the finite
size gap values is different for different j ′ values. This is apparent because the thermodynamic
gap for the two-leg ladder system is of the order of the interchain coupling, j ′. For a j ′ value
comparable to the chain coupling ( j ), the rate of finite size gap reduction is very low, much less
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Figure 3. Energy gap versus j ′ for N = 8 (circle), N = 16 (square), N = 24 (open triangle),
N = 32 (filled triangle) and N = 40 (star) for (a) spin ladder and (b) diverging ladder with p = 2.

compared to those for smaller j ′ values. This shows that the finite size effect is almost absent
when the chains are coupled strongly, beyond a certain chain length. Interestingly, it gives us
a clue to the extent of spatial length over which the excitation is spread. As the chain length
grows, the triplet wavefunction is deconfined into both chains with a spatial length.

On the other hand, in the case of the p = 2 diverging ladder, the gap decreases smoothly
with j ′, initially with larger slope for smaller j ′, but with larger j ′, it settles at different finite
size spin gap values. Unlike in the case of the ideal two-leg ladder, the reduction of the gap
with increase in the j ′ value seems to be consistent for all system sizes that we have considered.
However, the magnitude of the finite size gap decreases with increase in system size for all j ′
values. This points towards an effective length for the excitation with gapless behaviour in the
thermodynamic limit. Similar behaviour is also found for other diverging ladders.

For a clear picture of the excitation gaps in the infinite limit and the spatial length of the
excitation, we have plotted finite size gap values as a function of inverse system size (N) for all
the j ′. The solid curves are fits to the data of the form

�(N) = � + a1 N−1 + a2 N−2 + · · · (2)

where �(N) is the spin gap of the N-site system.
For the diverging ladders, we find that the system is gapless for all values of j ′. However,

for the spin ladder, where j ′ is constant, the energy gap increases with j ′, as has been reported
earlier. Figure 4(a) shows the convergence of the singlet–triplet energy gap with inverse system
size for all p values with j ′ = 0.5. Interestingly, as can be seen from figure 4(a), as the system
size is increased the spin ladder gap crosses the diverging ladder gap at some N value, which
strongly depends on p. For each diverging ladder, and for each j ′ value, we find the system
size where the spin gap is same as the spin ladder gap, which is denoted by (αp, j ′(N)). This
is a direct theoretical observation of quantum-confinement-induced crossover. That is to say,

4



J. Phys.: Condens. Matter 19 (2007) 172201 Fast Track Communication

0.02 0.06 0.1
1/N

0

0.6

Δ st

0.25 0.35 0.45 0.55 0.65

0

20

40

α p,
j′
(N

)

(a)

(b)

j ′

Figure 4. (a) Gap versus 1/N for p = 1 (circle), p = 2 (square), p = 3 (triangle) and p = 4 (star)
diverging ladders; (b) crossing point versus j ′ with p = 2 (circle), p = 3 (filled square) and p = 4
(triangle).

(αp, j ′(N)) represents the effective system size over which the triplet excitation is spread. To
compare and contrast the (αp, j ′(N)) values for different values of j ′, in figure 4(b) we have
plotted them as a function of j ′ for all cases of diverging ladders. As can be seen, αp, j ′(N)

decreases with increase in j ′. Note that, since our system sizes are small (from 8 to 40 sites),
for smaller values of j ′, we do not find any spin gap crossing. In fact, for smaller j ′, the triplet
excitation is spread over a large system size. This shows that the low energy excitation of
a ladder system is strongly influenced by interchain coupling and that the excitation itself is
spread over two chains [19, 20]. The main point is that the critical system size required for the
triplet excitation to be stable depends strongly on the interchain coupling.

In conclusion, we have studied the Heisenberg ladder and as well as the diverging ladders
via the density matrix renormalization group method. Our results confirm the existence of the
gap in the excitation spectrum of the Heisenberg ladder for even number of legs and gaplessness
over all the interaction strengths for the diverging ladders. We have also measured the effective
length scale of the triplet excitation over which the excitation is spread in these ladder classes
of systems.

SKP thanks DST, Government of India, for research grants, and DP thanks CSIR, Government
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